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Abstract—The growing computing power of embedded systems
has led to an increase in the use of general-purpose Operating
Systems (OSs) such as Linux. However, the substantial attack
surface arising from their complexity makes them unsuitable
for safety and security-critical use cases. Addressing this is-
sue requires isolating the security-critical functionalities into
separate execution environments and protecting them from the
untrusted OS. Arm TrustZone applies this approach by providing
hardware-based partitioning of the system into a secure and
non-secure world, facilitating a Trusted Execution environment
for the protection of security-critical functionality in the secure
world. TrustZone, however, falls short when dealing with systems
that virtualize multiple operating systems. Another approach
to isolate functionality is employing a microkernel, such as the
formally proven correct seL4 kernel, especially if it also offers
virtualization functions. While current seL4-based virtualization
systems offer good security and safety properties, they do not
provide TrustZone-compatible security services to their virtual-
ized guests. In this paper, we propose TEEVseL4, a TrustZone-
compatible virtualization system leveraging the strengths of the
seL4 microkernel, that can provide security services to the Linux
guests based on the dynamic, scalable and flexible Trusted
Computing Base of an seL4 system. A high-level performance
benchmarking shows that TEEVseL4 can provide security ser-
vices with acceptable overheads (less than 20%) when compared
to a native TrustZone system, making it an attractive option for
platforms with multiple, mutually-distrustful virtualized guests.

Index Terms—Security, Virtualization, seL4, Arm TrustZone,
TEE

I. INTRODUCTION

Embedded systems, from smartphones and routers to smart
vehicles, are increasingly running versatile general-purpose
OSs like Linux [1]. Linux is a well-known open-source kernel
that offers extensive functionality, mature technology, broad
hardware compatibility, and a rich collection of available
software applications. These attributes have made it an attrac-
tive choice for domains with high demands for safety and
security, such as the automotive [1] and space industries [2].
However, like other general-purpose OSs, the complexity of
Linux can render it vulnerable to attacks, especially when it
is connected to the internet [3]. Moreover, Linux was not
originally designed with security and safety-critical applica-
tions in mind. To enhance the security of systems relying on
complex OSs such as Linux, it is necessary to isolate security-
sensitive applications from the general-purpose OS and its
other applications.

A Trusted Execution Environment (TEE) (§ II-A) is a
separated execution environment running alongside a general-
purpose OS, also designated the Rich Execution Environment
(REE), and is responsible for protecting assets and executing
trusted and security-critical code isolated from any threats
that exist in the potentially compromised REE [3] [4]. Arm
TrustZone (§ II-B) is a hardware-based security technology
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Fig. 1: The TEEVseL4 system architecture, leveraging microkernel (seL4)
and Arm TrustZone-compatible software solutions, provides a trustworthy
virtualization system with a TrustZone-compatible TEE for secure isolation
of security-critical functions.

that allows the creation of a TEE by providing hardware-based
partitioning of the system into two isolated environments:
Secure World (SW) and Normal World (NW), to represent
the TEE and REE respectively, as shown in Fig. 1. This
functionality allowed TrustZone to become an industry stan-
dard for providing a TEE in mobile devices [5]. Despite its
widespread use, TrustZone has many limitations. Due to the
limit of two hardware-enforced partitions, TrustZone does not
provide component isolation within its TEE but leaves this
to be implemented in its TEE kernels (§ II-C), and systems
relying on TrustZone have been successfully attacked through
vulnerable third-party Trusted Applications (TAs) [5] [6]. In
addition, TrustZone does not account for virtualization of
multiple NW operating systems as virtualization in the secure
world is not supported 1.

Virtualization (§ II-D) is a technology that has been widely
adopted in embedded systems as a means of providing high-
level isolation for safety and security-critical purposes [7] [8].
Virtualizing TEEs in the NW using a trustworthy hypervisor
can address the issues of TrustZone. However, not all hyper-
visors are suitable for this purpose. Commodity hypervisors
that include a management Virtual Machine (VM) (e.g., Xen)
or host OS (e.g., KVM) have large codebase complexities that
expose a large attack surface. As a result, these hypervisors
are unsuitable for providing a TEE for many systems [8] [9].

1While we are aware that devices running Arm v8.4 have virtualization
support in the secure world, they are not yet widely used and thus difficult to
evaluate.



Creating a trusted hypervisor with a trusted codebase and a
small-attack surface is also a widely researched topic [8]–[10].

Microkernel-based hypervisors are another way of using vir-
tualization to provide isolation for security and safety-critical
applications in embedded systems. Microkernels (§ II-E) are
operating system kernels that offer functionalities like address
space isolation, threads and Inter-Process Communication
(IPC), within a small codebase [11] [12]. As such, they
are a good basis for systems that aim to decompose the
NW into components even smaller than virtual machines by
extracting system components and isolating them into small
execution environments, thus ensuring that the system compo-
nents work independently from each other [13]. Microkernel-
based hypervisors, like seL4 [14], Nova [10] or Fiasco [15]
also provide hypervisor functionality to enable code reuse
by virtualizing general-purpose OSs like Linux alongside
the rest of the decomposed system. These microkernel-based
hypervisors can be used as trusted hypervisors to provide TEEs
to the virtualized general-purpose OSs, addressing the issues
of Arm TrustZone [9] while providing functionality reuse to
the microkernel-based OS. seL4 (§ II-G), in particular, offers
a quality basis for creating a decomposed system, following
the Principle of Least Authority (POLA) (§ II-F) that allows
for scalable and fine-grained isolation of the security-critical
from non-critical system components [16] [14]. Furthermore,
seL4 can benefit from all of the functionality offered in a
NW by securely virtualizing general-purpose OSs like Linux.
Nevertheless, while an seL4 system allows for extracting
security-critical functionality into isolated components in user-
space, seL4-based systems do not provide a way for re-using
Arm TrustZone compatible security solutions for securing their
virtualized guests.

A. Requirements
To address the challenge of isolating security functionalities

in protected components suitable for safety and security-
critical systems like the automotive system, we have identified
a set of critical requirements. These requirements aim to
ensure that any proposed approach can meet the rigorous
demands of such systems in terms of both security and safety
while still offering extensive functionality. These requirements
will form the basis for evaluating our system and comparing
it with the state-of-the-art approaches, which we will discuss
in § V.

• Virtualization of multiple Linux guests: The system
shall be able to reuse Linux functionality without com-
promising the rest of the requirements, ensuring compati-
bility with existing software solutions and minimizing the
need for additional development efforts. Furthermore, the
system should be able to virtualize multiple Linux guests
to accommodate dividing functionality in separate VMs.

• Scalable system architecture:
– Fine-grained decomposition: The system shall allow

to decompose critical functionality into sufficiently
small components. Non-critical components should
have more flexibility with their Trusted Computing
Base (TCB), allowing for a good functionality-security
trade-off.

– Support for POLA: The system shall provide an
access control mechanism that allows to approximate
POLA - all components should only have access to
resources or functionality necessary for their proper

function, preventing unauthorized access and minimiz-
ing the potential for security breaches.

– Dynamic system: The system shall support run-time
reconfiguration; i.e., allow for the creation and destruc-
tion of components, including Linux VMs, based on
current system needs.

• Security Services for Linux Guests: The system shall
be able to provide an isolated execution environment that
can provide security services to the virtualized Linux
comparable to the Arm TrustZone security solution, en-
suring that Linux guests are adequately protected against
potential security threats.

• Arm TrustZone compatibility: The system shall be able
to reuse existing Arm TrustZone software solutions in
its isolated execution environment to provide security
services to the Linux guest, ensuring compatibility with
existing security infrastructures and minimizing the need
for additional development efforts.

B. Contribution
In this paper, we propose the TEEVseL4 system architec-

ture that was designed to meet all the set requirements (§ I-A).
We built on an seL4-based virtualization system, which we
extend with the ability to provide a TrustZone-compatible
security extension to its virtualized guests. In particular,

• We propose TEEVseL4, a TrustZone-compatible virtual-
ization system leveraging the strengths of the seL4 mi-
crokernel that can provide security services to the Linux
guests by virtualizing a mature and widely-used TEE OS,
Open Portable Trusted Execution Environment (OP-TEE)
[17]. Also, we report on our prototypical implementation
of TEEVseL4 (§ III).

• We empirically evaluate our implementation of
TEEVseL4 and compare its performance to a TEE
on a non-virtualized platform. Our analysis shows that
although our solution introduces a small performance
overhead § IV, this degradation does not significantly
impair its usability. Also, we assess how TEEVseL4
meets the set requirements.

• We demonstrate the functionality of the proposed system
and its compatibility with existing security solutions by
running a firmware Trusted Platform Module (fTPM) and
leveraging it to execute a remote attestation of software
example (§ IV).

• We compare TEEVseL4 to other approaches seeking to
improve the security of Linux by system architecture
modifications (§ V).

II. BACKGROUND

A. Trusted Execution Environments
OSs reduce the attack surface of the system using process

isolation to limit the attack-surface to individual processes.
However, with growing complexity, OSs themselves become
vulnerable to attacks [6]. Thus, as shown in Fig. 2, it becomes
crucial to isolate the security-critical components from the
untrusted OS [6]. This problem led to efforts in providing an
isolated environment intended for secure execution of sensitive
code [4]. The term Trusted Execution Environment (TEE) was
first coined by GlobalPlatform in an attempt to standardize this
isolated execution environment [4]. A TEE is a separate and
isolated execution environment running alongside the main
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Fig. 2: General-purpose OSs have critical functionality that needs to be isolated from the rest of the untrusted OS (a) and multiple technologies can be used to
address this like Arm TrustZone (b), virtualization (c) or microkernels (d) to provide systems with different security properties. Even though, these solutions
have been laid out according to Arm Exception Levels (§ II-B), TrustZone is the only exclusively Arm-based solution.

operating system. A TEE is responsible for the protection
of its assets against software attacks and it is possible to
implement it using various technologies that provide different
security properties [4]. Even though the world of TEEs is
heterogeneous and the term TEE has multiple definitions, the
provided definition is good enough as a basis for exploring
the world of TEEs.

B. Arm TrustZone

Arm TrustZone was first released in 2004 and has, since
then, provided security primitives for accommodating TEEs
[5]. As shown in Fig. 2b, the core idea of Arm TrustZone
is partitioning the system into two worlds: NW and SW,
allowing for strong isolation between the untrusted and trusted
components [5]. The trusted, security-sensitive components
are supposed to be moved to the SW, and the untrusted
components remain in the NW The interaction between the
two worlds is mediated by the highest privileged system
component, the Secure Monitor [5]. To achieve this, TrustZone
introduces the Non-Secure (NS) bit in the Secure Configura-
tion Register (SCR) of the processor. The value of this register
is propagated throughout the system including the memory,
caches and bus controllers. The NS bit marks whether the
current execution is done in the secure (NS=0) or non-secure
(NS=1) world [5].

The Arm architecture defines four exception levels (EL):
(1) EL0: user/application level. (2) EL1: (OS) kernel level.
(3) EL2: optional, hypervisor level. (4) EL3: optional, Secure
Monitor level. Arm TrustZone adds two flavors to EL0 and
EL1: (i) S-EL0: secure user/application level. (ii) S-EL1:
secure (OS) kernel level. The Secure Monitor (running in EL3)
facilitates transitions between the two worlds by updating the
security status, NS-bit in SCR EL3 [5]. A world switch is
initiated by executing the Secure Monitor Call (SMC) instruc-
tion in (S-)EL1, which transfers control to the Secure Monitor
in EL3 [5]. Many systems use Arm’s Arm Trusted Firmware
(ATF), which includes a Secure Monitor implementation, in
addition to other system-level services such as Power State
Coordination Interface (PSCI) [18] and Software Delegated
Exception Interface (SDEI) [19]. The access to firmware
services involves SMC calls, which are governed by the SMC
Calling Convention (SMCCC) [20]

C. TEE Kernels

As shown in Fig. 2b, software running in the SW is called
a trusted kernel or trusted OS and is responsible for providing
secure services and allowing the execution of security-sensitive

applications. However, this trusted kernel is not a part of ATF,
but is left to the system provider to implement. There are many
options for a trusted kernel, from closed-source proprietary so-
lutions like Samsung KNOX or Qualcomm QSEOS, to open-
source trusted kernels like OP-TEE, Open-TEE, Trusty, Andix
OS, Genode etc. While systematic overviews of different
properties are available [5], in this paper we will only provide
the reasoning for our choice, OP-TEE, which is an open-
source, GlobalPlatform compliant TEE kernel designed to run
in parallel with a REE OS while leveraging Arm TrustZone
hardware isolation mechanisms [17] [21]. OP-TEE has a small
TCB with a suitable functionality set. While this is true for
other GlobalPlatform compliant TEE kernels like Trusty and
Open-TEE, OP-TEE is the only TEE kernel with integrated
support in both mainline Linux and ATF. Furthermore, OP-
TEE was designed with portability in mind and it does not rely
on Arm TrustZone functionality directly which enables OP-
TEE to use isolation providers different than Arm TrustZone.
OP-TEE consists of three main components [17]:

• OP-TEE OS: the actual TEE kernel running at S-EL1 re-
sponsible for providing isolation between TAs, managing
exceptions, shared memory allocation, providing secure
storage and cryptography primitives.

• OP-TEE Client: the user-space framework consisting of
the TEE Supplicant and the OP-TEE client library, run-
ning at EL0, that enables interaction between user-space
untrusted applications and the OP-TEE Driver.

• OP-TEE driver: a crucial component, running at EL1,
responsible for communication between the user-space
apps and the TEE. OP-TEE driver forwards the user-space
requests to the TEE and collects TEE requests and makes
them available to the user-space.

D. Virtualization

Virtualization is a highly researched topic with different
goals for various use-cases. In cloud computing infrastructure
virtualization is an established way of running multiple (guest)
operating systems that can be used for high availability of
workloads, workload balancing, sandboxing applications that
can interfere with the rest of the underlying machine [22].
Recently, in embedded devices, virtualization is researched
and adopted as a security measure. Virtualization can provide
spatial and temporal isolation for different processes and
functions by separating (decomposing) the system into isolated
VM-based execution environments, as shown in Fig. 2c. The
software entity responsible for decoupling the virtualized OS
from hardware, isolating it from other software components,



scheduling its execution alongside other system components
is called a hypervisor [22]. In general, hypervisors are divided
into two types [22] [23]:

• Standalone or Type 1 hypervisor: hypervisor that runs
directly on system hardware and completely controls all
system hardware and resources (e.g., Xen, seL4).

• Hosted or Type 2 hypervisor: hypervisor that runs as
a part of an OS that completely controls all system
hardware and resources and the hypervisor (e.g., QEMU,
Oracle VM VirtualBox).

E. Microkernels
Microkernels are operating system kernels that differ

from more common general-purpose monolithic kernels (e.g.,
Linux) in that they provide only basic functionality like
address-space based isolation, threads and thread scheduling
and IPC [11] [12]. In comparison to monolithic kernels,
microkernels cast out all other operating system features from
privileged kernel-space to unprivileged user-space. With this
design, microkernels drastically reduce their TCB and the
attack-surface of the privileged code, while allowing the rest
of the OS to be tailored for the target application [14]. Further-
more, because microkernels enforce component isolation, units
like drivers, file systems and network stacks that are integral
parts of monolithic kernels can be isolated into separate
components that communicate through the microkernel.

Even though, microkernels offer a quality base for con-
structing a safety and security-critical oriented decomposed
system, they offer no direct support for the features removed
from the kernel-space like device drivers, file-systems and
network stacks. Since they are needed for a general-purpose
OS (as shown in Fig. 2d), many modern microkernels use
virtualization to solve this problem as they can be used
as microkernel-based hypervisors [14] [10]. This allows the
system to leverage the functionality of a virtualized general-
purpose OS (e.g., Linux) as just one of the isolated compo-
nents in the system.

F. Principle of Least Authority (POLA)
A system that can prevent a failure of one component from

influencing the behavior of other system components is desir-
able in industries with security and safety-critical applications
like the automotive industry [11]. To achieve this property, it
is necessary to ensure that the components are truly isolated
and independent from each other by designing the system with
the POLA in mind [24]. If a system is designed in accordance
with POLA, every component has only the minimum set of
privileges necessary to fulfill its function [1]. Capability-based
access control models are a strong way to achieve a system
that follows POLA, through its use of capabilities-forge-proof
references to kernel resources that also contain a component’s
access right to those resources [1] [14]. This capability access
control-based systems allow for a fine-grained-access control
of kernel resources allowing for the creation of a system that
enforces POLA [1] [14].

G. seL4
Part of the L4 family, seL4 is a third-generation microkernel,

designed with security and safety in mind [14] [12]. seL4
has a number of state-of-the-art characteristics that make it
particularly suitable as the base for complex systems like
its minimality, typical for L4-influenced microkernels, it only
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provides essential features that cannot be implemented outside
the kernel without security complications: threading, user-
space address-space management, scheduling, IPC. Further-
more, seL4 comes with an access-control system based on
object capabilities, support for policy-free kernel memory
management and support for common CPU architectures,
particularly ARM v8-A. In addition, seL4 offers class-leading
performance of the critical IPC, both synchronous and asyn-
chronous and support for mixed-criticality systems (MCS),
allowing for better scheduling control than fixed priorities
alone. seL4’s most distinctive feature is a formal correctness
proof that shows that the implementation conforms to a formal
specification. This proof guarantees that a wide range of
common implementation defects, such as null-pointer derefer-
encing, is impossible. Lastly, seL4 can function as a hypervisor
to provide code and functionality reuse from general-purpose
OSs like Linux. In hypervisor mode, seL4 runs in EL2 while
the Linux guest EL1 native and Linux apps execute in EL0 as
shown in Fig. 2d.

III. APPROACH

We leverage seL4 as a microkernel-based hypervisor, which
serves as a scalable and flexible base system that can dy-
namically virtualize multiple Linux VMs in accordance with
POLA. Before discussing the design of our contribution, we
will first provide an overview of the base system architecture
we contribute to.

A. Base System

seL4 can function as a microkernel-based hypervisor, vir-
tualizing Linux guests as unprivileged, isolated component to
enable code and functionality reuse. True to the microkernel
principles, seL4 itself does not provide a fully-fledged VM
but only primitives that allow the construction of a VM. To
that end, seL4 provides two object types: virtual address space
(VSpace) and a vCPU execution abstraction as shown in Fig. 3.
An seL4 VSpace is used to provide the memory environment
for a thread (seL4 Thread Control Object (TCB)), in that it
provides a container into which memory objects can be placed.
A vCPU extends the user-level context provided by a thread
with the privileged execution context used by the guest kernel.
When seL4 dispatches a thread with an associated vCPU,
which itself is linked to a VSpace, it resumes execution in
the VM context instead of a user context. On a fault, e.g., as
a result of an access to non-mapped address in the VSpace or
an exception generating instruction like an SMC, seL4 stops
the thread, synthesizes a fault IPC, and delivers it to a fault
handler. After handling the fault, the fault handler resumes the
vCPU execution.
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A VM is managed by a so-called Virtual Machine Mon-
itor (VMM), a regular user-level component without special
privileges. The VMM activities can be broadly categorized as
follows

• setup: allocating resources such as RAM, initializing the
VM, loading the guest OS image, device initialization and
mapping e.g., guest interrupt controller (vGIC [25]).

• run-time management: handling guest faults arising from
the interaction with virtual devices, implementing virtual
devices, injecting virtual interrupts.

1) Virtual Machine Setup: During the VM setup, the VMM
creates a VM child process, allocates the seL4 TCB and vCPU
objects based on the specified number of vCPUs for that
machine. The next step is to announce the available devices to
the guest and this is done through the use of Device Tree Blobs
(DTBs). DTBs are essentially a list of device nodes available
in the system with each node carrying information on the type
of the device, its location in memory and any other device-
specific information. The VMM generates the DTB matching
to the set of devices it initialized and loads it into the guest
VSpace. The last step to configure the VM is to configure the
primary vCPU entry-point and to set the correct initial vCPU
context (platform and OS specific). To start the VM, VMM
starts the primary vCPU and signals to seL4 that it should
switch the execution to the VM vCPU. The initial boot process
is always done on the primary (v)CPU and the guest OS is
responsible to start all other vCPUs as specified in the DTB.

B. Virtualizing OP-TEE

Our goal is to leverage our existing seL4 setup and extend
it with OP-TEE security services. To virtualize OP-TEE, we
need to add the Arm TrustZone functionality to our system.
For a TZ-compatible environment, two issues need to be
addressed:

1) In TrustZone, the NW (Linux OP-TEE driver in the
Linux kernel) and the SW (OP-TEE OS) cannot invoke
services directly. Instead, the need to pass through the
EL3 Secure Monitor facilitated SMC instructions, that
trap into EL3. The Secure Monitor then ensures that the
execution resumes at an appropriate entry-point in the
other world.

2) In the process of a TrustZone world switch, the memory
access permissions have to be reconfigured. When exe-
cuting in the SW, all memory is accessible. Execution in
the NW cannot access the memory exclusively assigned
to the SW.

The first design choice was how much of the VM com-
ponents should be shared between the SW and NW. Several
design paths were to be considered:

1) Complete separation of the SW and NW into separate
VMs with separate VMMs. This approach could be
imagined as running two VM and two VMM processes.
The SW VM can map the entirety of the NW memory
and both VMMs could communicate through shared
memory or seL4 IPC to ensure context switching and
SMC handling (Fig. 4a).

2) Semi-complete separation of the SW and NW into sep-
arate VMs with a single VMM. This approach could
be imagined as running two VM in one VMM process.
Running two VMs from a single VMM means that we
would provide two sets of vCPUs with their match-
ing TCBs, interrupt controllers and memory devices.
The communication between these VMs would be done
through the shared VMM (Fig. 4b).

3) Minimal separation of the SW and NW with one VM
and one VMM. This approach is the closest to the Arm
TrustZone design. The worlds share CPUs but each CPU
can only be used by one of the worlds at the same time.
However, the available mechanisms in this option (one
VM and one VMM) do not provide isolation of these
two worlds, thus this option has to include an additional
solution for SW/NW isolation (Fig. 4c).

Option 1 allows the most code reuse of the existing base
system at the cost of the most complex transitions between
the SW and NW. Both option 1 and 2 use separate interrupt
controllers, which offers easy separation of interrupt handling
but raises the problem of interrupt controller synchronization
and their effect on interrupt latencies. Option 3 is the most
similar to Arm TrustZone and shows the most promise for
integrating Arm TrustZone ecosystem solutions like OP-TEE.
Option 3, however, cannot leverage existing mechanisms for
world separation. The standard way of providing component
isolation in seL4 is through the use of VSpaces. By adding
a second SW VSpace to Option 3, as shown in (Fig. 4c), we
get an Arm TrustZone-like solution.

1) World Isolation: seL4 provides a way for providing
component isolation through the use of VSpaces. By providing
a second VSpace to our VM and mapping all of the VM
components to SW and NW VSpaces, we get memory access
privileges similar to that of Arm TrustZone. The NW VSpace
remains unchanged, it contains allocations for the guest OS
images, DTBs, devices etc. However, the new SW VSpace is
privileged and has access to the entire system. We achieve
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this by allocating and mapping a new memory region for
the OP-TEE OS to the SW VSpace. We consider this part
of the SW VSpace secure memory. Furthermore, we expand
the SW VSpace with access to the non-secure memory of
the NW by mapping in all of the memory that is contained
in the NW VSpace. This way, we get the asymmetric view
of the memory that matches the Arm TrustZone architecture
where the SW has access to the whole VM memory, while
the NW has access to only the non-secure parts. Lastly, while
TrustZone uses cache tagging to prevent access by the NW to
SW data that is held in caches, in our system this is not needed
as the hypervisor-controlled second-stage translation of guest
physical addresses enforces this isolation for both cached and
uncached data.

2) vCPU World Transition: We can replicate the Secure
Monitor world switch by saving all of the vCPU/TCB state on
each transition. Since seL4 maintains and restores the vCPU
stage, we only need to leverage four seL4 syscalls for saving
and restoring the vCPU context. seL4 ARM VCPU ReadReg
and seL4 ARM VCPU WriteReg for manipulating the
vCPU system registers and seL4 TCB ReadRegisters and
seL4 TCB WriteRegisters for manipulating the vCPU (TCB)
general-purpose registers. To reduce the number of context
switches between the kernel and the VMM, we followed
the example of seL4 syscalls for managing the sel4 TCB
registers and extended the syscalls for managing the vCPU
registers with the ability to manage multiple registers using
a single call. With regards to the seL4 correctness proof, this
change is negligible and could be easily incorporated in future
versions of seL4. On each transition, we use these syscalls to
save the current and load the previous vCPU state into the
seL4 vCPU object with the updated entrypoint address and
any modifications to other vCPU registers necessary.

3) SMC Handling: During run-time, the VMM handles all
guest faults: traps registered during initialization of the VM
(e.g., vGIC configuration accesses) or exceptions (e.g., virtual
interrupt injection or trapping instructions like SMCs). Since
transitions between the SW/NW are triggered by SMCs, we
need to replicate the Arm TrustZone interface in the VMM
SMC handler. As shown in Fig. 5, during guest VM execution,
a guest can request a transition between SW/NW by executing
an SMC instruction 1 . The hypervisor traps SMCs into EL2
by setting the HCR EL2.TSC configuration register. Then, the
SMC call will be delivered to seL4 2 . seL4 forwards the
fault as an IPC to the VMM together with the information
about the fault 2 . Upon receiving the fault, the VMM
decodes this fault according to the SMCCC [20]. SMCs that
come from or target the SW are delivered to the OP-TEE SMC

handler 3 . The handler, then, checks which VSpace was
attached to the vCPU during the last execution to determine
whether the source was SW or NW 4 and to determine
whether OP-TEE was successfully initialized (more on this in
§ III-B4) 5 . Depending on the result of previous two checks,

the SMC handler has to handle four cases 6 :
1) the SMC source was the NW and OP-TEE was initialized.

In this case, the SMC handler needs to check whether
the SMC is of type fast or yielding [20] and set the
SW entrypoint to the matching OP-TEE exception vector.
Registers X0-X7 are passed along to OP-TEE as call
parameters.

2) the SMC source was the SW and OP-TEE was initialized.
In this case, OP-TEE is returning from an operation and
the NW entry-point does not change from its previous
vCPU state. Register X0 - X4 (some cases just X0) are
passed along to NW as return parameters.

3) the SMC source was the SW and OP-TEE was not
initialized. In this case, OP-TEE is returning from its
initialization and the NW entry-point is the Linux kernel
entry-point. Register X0 contains the value of the OP-
TEE exception vector table and is saved for later use.

4) Invalid SMC.
In case of invalid SMC, only the Program Counter (PC) is
incremented; otherwise, the SMC handler executes the context
switch (§ III-B2) by 7 :

1) saving the current vCPU state into the appropriate (SW
or NW) data structure and increments its PC (to step over
the exception instruction).

2) restoring the saved target vCPU state from the appropriate
(SW or NW) data structure and updating the PC and
registers based on the branch of execution it took.

Lastly, the SMC handler resumes the vCPU, marking the
fault handled 8 and returns information to the VMM which

VSpace is to be run after VM is resumed 9 . The VMM
sets the proper VSpace to the TCB and signals to seL4 to
schedule the VM vCPU for execution 10 . seL4 then loads
the modified vCPU state into the pCPU and executes the VM
with the target VSpace 11 . Fig. 5 shows this process when

the SMC is issued in the NW 1 to execute an OP-TEE call

in the SW 12 and the same process when OP-TEE uses an

SMC to signal success and request a return to the NW 1 -

12 .
4) OP-TEE Boot Procedure: Now that we designed a

mechanism to transition between the worlds, we focus on
virtualizing the OP-TEE OS alongside a Linux guest. While
the first phase was concerned about the world transition
process, in this phase we focused on ensuring the correct
functionality of our SW/NW interface. For this purpose, we
allocated and mapped a memory area for OP-TEE in the VM
secure memory, just before the Linux image, as shown in
Fig. 6, and load the OP-TEE image as part of the VM setup.
The last step was to update the Linux DTB specifying that
OP-TEE is available in the system. As ATF boots the SW
software before NW software, we do the same, by setting our
VM primary vCPU entrypoint to the OP-TEE entrypoint. To
reduce the adaption effort, we selected the QEMU Armv8
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Fig. 6: The SW and NW VSpaces populated. The NW VSpace contains the
Linux image, initial RAM Disk and DTB, while the SW VSpace contains
everything mapped to the NW VSpace with the addition of OP-TEE OS.

platform, which due to the platform’s simplicity, required
minimal changes to its configuration:

• Changing the OP-TEE secure RAM location and size to
match our design.

• Changing the default debug serial device.
• Changing the default address of the interrupt controller.
• Using the Arm GICv2 controller instead of Arm GICv3

(Explained in more detail in § III-B5).
• Disabling the OP-TEE feature that allows OP-TEE to

announce itself in the NW DTB, as we are already doing
that.

Configuration changes similar to these are necessary for port-
ing OP-TEE to any new platform and no other changes - in
the architecture-dependent part or otherwise - were necessary.
After OP-TEE has successfully booted, it issues an SMC
with its exception vector table address and we are ready to
boot Linux. During boot process, Linux will read the OP-
TEE device node from the provided DTB, load the OP-
TEE driver and execute a handshake with OP-TEE to finish
the initialization process. If Linux has the entire OP-TEE
framework installed (OP-TEE Client, OP-TEE supplicant and
optional OP-TEE TAs), the virtualized Linux has complete
access to OP-TEE functionality with changes only made to
OP-TEE QEMU configuration files of 29 insertions and 7
deletions. The changes to our base system were in total 2002
insertions and 491 deletions.

5) Interrupt Handling: The last part of our design is related
to interrupt handling. As secure devices are an optional feature
for the SW, we consider them out of scope for our paper.
Since we configured OP-TEE to use the Arm GICv2 interface
of the interrupt controller, OP-TEE expects secure interrupts
to be delivered only as Fast Interrupt Requests (FIQs) [25]
which effectively disables interrupts for the SW. We can do
this because:

1) GICv3 (we are running in the system) fully supports
software using it as GICv2 [25].

2) Since we are running in the NW only, no FIQs will
ever be delivered to the VM, making their handling
unnecessary.

This ensures, that all devices shared by the SW and NW (e.g.,
debug serial console) have their interrupts handled in the NW.
If SW-only devices are assigned to OP-TEE it runs correctly
without ever receiving an interrupt. This limitation can be
solved, by making changes to the virtual interrupt controller

(vGICv3) to handle secure interrupts based on the VSpace
currently associated with the vCPU. However, this is out-of-
scope for this paper.

IV. EVALUATION

We deployed our system on the NVIDIA Jetson AGX
Orin Developer Kit with 12-core Arm Cortex-A78AE v8.2
64 bit CPU and 32GB of memory and we are comparing
our system against a native Arm TrustZone OP-TEE TEE.
Both systems are running on a single CPU core with a 2GHz
clock frequency with a Linaro (maintainer of OP-TEE) Linux
5.14 with accompanying OP-TEE framework (OP-TEE Linux
Driver, Supplicant, Client and Test Framework). Our system is
running OP-TEE OS 3.15, while the native system is running
NVIDIA Tegra OP-TEE and ATF ports. The main difference
between these versions of OP-TEE is that the NVIDIA OP-
TEE has reworked memory management mechanisms to better
suit the hardware and introduced a closed-source cryptography
library with access to hardware cryptographic-accelerators.
Reusing this library would eliminate any cryptography oper-
ation overhead in our system. However, since NVIDIA does
not offer documentation on how such changes were made to
OP-TEE and does not support running OP-TEE without these
changes, using an identical OP-TEE version proved to be too
challenging. Nevertheless, we believe that the results presented
in the rest of the section provide a meaningful performance
comparison.

To evaluate the performance of our system, we designed
five performance benchmarks: three micro-benchmarks and
two high-level benchmarks. These benchmarks were used to
compare our system’s performance to that of the native system.

A. Micro-benchmarks
To evaluate the performance of discrete parts of our system,

we designed three micro-benchmarks:
1) SW/NW transition micro-benchmark: we implemented

a TA with an empty call. When calling this TA, the only
operation performed in the SW is finding the appropriate
call handler and immediately returning a success. We
used this TA to measure and compare the time it takes
to transition between the SW and NW on both systems.

2) AES-CBC encryption micro-benchmark: we leveraged
an existing TA from the OP-TEE Test framework with a
call that encrypts a 1024B chunk of data using AES-
CBC with 256 bit key. We used this TA to measure and
compare the performance of cryptographic operations on
both systems.

3) Prime number calculation micro-benchmark: we im-
plemented a TA with a call that finds the prime num-
bers among the first 10 000 positive numbers using the
Fibonacci Trial Division algorithm. We used this TA to
measure and compare the performance of a CPU-only
workload in the SW on both systems.

Each micro-benchmark was executed 5000 times on both
systems and the results are shown in Fig. 7. The prime
number arithmetic micro-benchmark (Fig. 7c) demonstrates
only a 2% performance overhead on average when running
on our system compared to a native system, while both
the SW/NW transition (Fig. 7a) and AES-CBC encryption
(Fig. 7b) micro-benchmarks show an average overhead of
90%. When comparing the percentage of performance over-
head for the different micro-benchmarks, it is not surprising
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Fig. 7: Micro-benchmark results for (a) SW/NW transition, (b) AES-CBC encryption, and (c) prim number arithmetic, comparing TEEVseL4 and native TEE
system performance.
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Fig. 8: Performance comparison of secure storage write (a) and read (b) of
1MB using TEEVseL4 and native system.

that the SW/NW transitioning micro-benchmark exhibits the
highest overhead. This is due to the four context switches
involved in transitioning from the SW to the NW (compared
to the 2 in the native system), as illustrated in Figure 5,
as well as the seL4 syscalls for vCPU management and
VSpace swapping. In contrast, the prime number arithmetic
micro-benchmark, despite having the longest total execution
time, shows the smallest percentage of performance overhead
when compared to the native system. This is because the
performance overhead of our system is mostly confined to
the SW/NW transitions. This can be seen by subtracting the
average transition micro-benchmark execution time (which
is part of every micro-benchmark) from the average prime
micro-benchmark time for both systems. These results show
that without the transition overheads, TEEVseL4 and the
native system have comparable results. The same argument
can be applied to the AES-CBC micro-benchmark. However,
we observed an additional 60% overhead due to the fact that
the NVIDIA OP-TEE port utilizes hardware cryptographic
accelerators for its cryptographic functions. Overall, the micro-
benchmarks demonstrate that the SW/NW transitions are the
only significant source of overhead. This overhead could be
reduced, if not eliminated, by relocating the SW SMC handler
from the user-space VMM component to the seL4 hypervisor.
By doing so, the number of context switches will be reduced to
2 (NW-seL4-SW), and the need for syscalls will be eliminated.

B. High-level benchmarks
To evaluate the performance of our system on real world

applications, we designed two high-level benchmarks.
1) Secure Storage benchmarks: we leveraged an existing

OP-TEE test framework TA that reads or writes prede-
fined data of arbitrary size. We used this TA to measure

and compare the performance of OP-TEE secure storage
in the SW on both systems. We measured the time to
execute both read and write operations of 1MB that
was written/read in chunks of 1 kB. We repeated the
measurement 500 times. The results shown in Fig. 8
indicate that our system incurs an average overhead of
12% for read operations and 20% for write operations.
Upon evaluating a well-known TEE use-case (secure
storage), it becomes clear that the transition overhead
visible in the micro-benchmark has a reduced impact
on a real-world application as the average performance
overhead drops from 90% to 12-20%.
This benchmark, like the cryptographic micro-
benchmark, is skewed in favor of the native system
because OP-TEE Secure Storage uses AES-CBC
for secure storage file encryption, handled by the
superior crypto libraries in the native system. AES-
CBC encryption and decryption may also explain the
difference in read/write overhead. The encryption (write)
algorithm of AES-CBC is sequential, whereas the
decryption (read) algorithm is parallelizable, so one
reason for this discrepancy could be that the encryption
process is more efficient than the decryption process.
We cannot confirm this, however, since we do not have
transparency in the cryptographic libraries the native
system uses. Nonetheless, this means that our actual
performance overhead is even smaller than our current
numbers.

2) Remote Attestation benchmarks: we utilized two com-
ponents: (i) TPM2Tools demo Remote Attestation (RA)
project, used to showcase how to leverage TPM2Tools
to provide remote attestation of software [26]. (ii) Mi-
crosoft’s demo implementation of a Firmware Trusted
Platform Module (fTPM) implemented as an OP-TEE
TA to showcase how to use OP-TEE to provide a soft-
ware only TPM [27]. TPM2Tools [28] is a collection of
TPM management tools based on the Trusted Computing
Group (TCG) TPM2 Library [29] that can interact with
a TPM using its Linux driver, if available on the system.
We provide a TPM to our system using Microsoft’s
demo fTPM project implemented as a TA and their
fTPM driver implemented as a part of mainline Linux.
The TPM2Tools RA demo executes in two steps: (i) a
registration process where the OS under attestation proves
its identity, and (ii) a verification process where the OS
under attestation proves its data integrity. We timed the
execution of both of these steps 500 times and the results
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Fig. 9: Performance Comparison of Remote Attestation Registration (a) and
Remote Attestation Registration Verification (b) using TEEVseL4 and native
system.

are available in Fig. 9. When evaluating a complex TEE
feature like the RA benchmark, the transition overhead
becomes completely negligible as in both cases of our
RA benchmark, we see no significant difference in the
performance of the two systems.

V. RELATED WORK

Arm TrustZone hardware extensions, alongside the ATF,
Secure Monitor and OP-TEE OS, provide a versatile and well-
integrated security solution for delivering security services
to its Linux NW. However, the design of two execution
environments isolated by hardware is a limitation when dealing
with a multi-guest OS NW and a security concern when
dealing with third-party TAs. Overcoming this limitation is
a widely researched topic in both academic works [31] [32]
[8] [7] [9] and industry solutions [30].

OP-TEE OS introduced a shared ”Nexus” component that is
responsible for many functionalities required by all TEEs, such
as starting/stopping virtualized TEEs, SMC communication,
memory management, thread creation, among others. The
Nexus component relies on the support of the NW hypervisor
(Xen Hypervisor) to virtualize multiple TEEs in the SW to
secure the multiple virtualized OSs in the NW [30]. However,
the use of a commodity hypervisor like Xen, that comes with
a complex TCB with a large attack surface inside its Dom0
management VM, the additional complexity of the SW with its
Nexus component, and the lack of POLA compliance, makes
this system unsuitable for our requirements.

TEEv [31] aims to provide reliable isolation of TAs in
different paravirtualized TEEs in the SW. Instead of relying
on the NW hypervisor, TEEv introduced a hypervisor in
the SW for paravirtualization of TEEs using the concept
of same privilege isolation [31]. By stripping the TEEs of
any privileged instructions that could overrule the privileged
trusted hypervisor and replacing them with calls to the trusted
hypervisor, TEEv ensures that its trusted hypervisor becomes
a privileged component in the SW [31]. Sanctuary [32], which
is another solution for decomposing the SW, leverages a SW
trusted kernel (OP-TEE) and the TrustZone Address Space
Controller (TZASC) for temporary reservation of a single
CPU core for the execution of an isolated TEE [32]. While
Sanctuary does not use virtualization for isolating TEEs, it is
limited in the number of TEEs that can run at the same time
by the number of CPU cores that can be reserved for executing
these TEEs. Even though Sanctuary and TEEv offer reliable
isolation of TEEs within the SW, neither TEEv nor Sanctuary

provide multiple TEEs for a NW that virtualizes multiple OSs
or designs their system in accordance with POLA.

vTZ [8] is another system that relies on the NW hypervisor
to virtualize multiple TEEs in the NW. Unlike OP-TEE,
vTZ addresses the concerns that arise when relying on a
NW hypervisor with a large attack surface by leveraging
Arm TrustZone to secure components that monitor the NW
hypervisor [8]. While vTZ does not address the issue of
reliable isolation within a single TEE, it allows for virtualizing
multiple OSs in the NW while providing each guest with
access to their own isolated TEEs. A vTZ-based system can
be customized to ensure that TAs use separate VMs thus
confining any vulnerable TA to an isolated TEE. However,
the interaction between these VMs would not be backed by a
system that offers fine-grained component isolation based on
POLA. Furthermore, vTZ cannot offer any component smaller
than a VM which raises concerns about the scalability of its
TCB.

Using purely trusted hypervisor solutions to provide TEEs
to virtualized Linux guests was addressed by many works
such as [7] [9]. Bao [7] is a statically partitioned embedded
hypervisor that focuses on virtualizing small safety-critical
embedded applications alongside virtualized general-purpose
OSs. Bao provides security enclaves to the virtualized general-
purpose OSs for execution of TAs. These enclaves are cre-
ated by temporarily donating the virtualized guest resources
(memory and vCPU) to the Bao hypervisor, which in turn,
ensures secure execution of the TA. Even though Bao offers
performance improvements compared to existing Arm Trust-
Zone security solutions like OP-TEE, it is not compatible with
them and its static architecture makes it unsuitable use-cases
where dynamic systems are required. Mirzamohammadi et al.
[9] proposed a system that can offer multiple TEEs to a single
virtualized Linux guest allowing for compartmentalization of
third-party TAs into separate TEEs. Furthermore, the authors
showed that their system allows for comparable or even
better performance than native Arm TrustZone, while retaining
compatibility with Arm TrustZone solutions like OP-TEE.
However, the proposed system is not compliant with POLA.
Also, the performance benefits apply only when the system
virtualizes a single general-purpose OS. Finally, their design
does not support virtualization of multiple OSs in the NW.

Comparative Analysis: Table I presents a comparison
between our proposal, TEEVsel4, and some of the solutions
presented above. The comparison is based on the requirements
introduced in § I-A. The comparison shows that TEEVseL4
has the capability to virtualize multiple Linux guests, which
is not the primary focus of other solutions like [31] [32] [9].
Additionally, TEEVseL4 is supported by a scalable TCB that
complies with POLA and enables fine-grained decomposition,
which is not available in most systems, as observed in [30]
[31] [32] [8]. Although Bao [7] and vTZ [8] are considered
to be strong contenders for a comparable system, vTZ lacks
fine-grained component isolation based on POLA, and Bao
provides a static system that is incompatible with existing
TrustZone software solutions. Finally, TEEVseL4 meets all of
our requirements. Although we did not specifically emphasize
the last requirement, it is important to note that our system
can fulfill this requirement by separating the functionality that
depends on possibly vulnerable TAs into separate VMs that
come with their own TEE, similar to vTZ.



TABLE I: Comparison of TEEVseL4 with other systems.
Requirement vOP-TEE [30] TEEv [31] Sanctuary [32] vTZ [8] Bao [7] [9] TEEVseL4

Virtualization of multiple Linux guests
Fine-grained decomposition
Support for POLA
Dynamic System
Security Services for Linux Guests
Arm TrustZone compatibility
Reliable component isolation in SW

Requirement is not met Requirement is not discussed but it could be partially met Requirement is met

VI. CONCLUSION

In safety-critical systems, it is crucial to isolate security-
critical functionalities from general-purpose OSs due to their
complexity and large attack surface. While Arm TrustZone
and its compatible security software provide a robust and
versatile TEE that enables such isolation, its design limits its
applicability to virtualize multiple OSs. On the other hand,
microkernel-based hypervisors can virtualize multiple OSs
alongside isolated native applications, but they do not offer a
way for re-using Arm TrustZone ecosystem software security
solutions for securing their virtualized guests. In this work,
we introduce TEEVseL4, which combines the advantages of
Arm TrustZone and microkernel-based hypervisors by virtu-
alizing OP-TEE, a TrustZone-based TEE OS, using the seL4
microkernel. We leverage seL4’s security properties to provide
security services to the multiple virtualized Linux guests in
the system, thereby addressing the limitations of both Arm
TrustZone and microkernel-based hypervisors. To demonstrate
the compatibility of our system with existing Arm TrustZone
solutions, we used TEEVseL4 to run an unmodified complex
third-party TA (Microsoft’s fTPM), on top of OP-TEE OS with
minimal changes to its configuration. Moreover, we conducted
a performance evaluation of TEEVseL4 and demonstrated
that the introduced performance overhead by our system is
acceptable for real-world applications, and in some cases,
negligible. Lastly, we demonstrated that our system is compat-
ible with complex third-party solutions with no porting effort.
In conclusion, TEEVseL4 presents a high-quality security
solution for safety and security-critical systems that require
the virtualization of multiple OSs. As a future direction, we
plan to enhance TEEVseL4 with secure interrupt support
and secure device sharing and explore potential performance
optimizations by transitioning the mechanisms to the seL4
kernel.
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