
Advanced IDPS Architecture for Connected and
Autonomous Vehicles

Sherin Kalli Valappil∗, Lars Vogel∗, Mohammad Hamad†, and Sebastian Steinhorst†
∗Robert Bosch GmbH, Abstatt, Germany

†Technical University of Munich, Munich, Germany

Abstract—Highly connected and automated driving technolo-
gies have ushered digital transformation and flexibility to modern
cars. However, the vehicle’s attack surface has significantly
expanded due to increased connectivity. To address this problem,
automotive manufacturers are adopting more secure practices
driven by standards and regulations. In addition to the deployed
cryptographically strong security measures in automotive, we
need an Intrusion Detection and Prevention System (IDPS) that
actively monitors the vehicle for intrusions, prevents them, and
provides notification, as required by UN Regulation No. 155.
In this work, we aim to identify the current limitations of the
existing automotive approaches and contribute to an advanced
IDPS solution. We propose architectural changes that improve
reliability and form a framework to propose reactions in a
safety-related automotive context. We evaluate our proposed
architecture with regard to performance and security design.
With the proposed changes to the IDPS architecture, our aim is
to integrate a dynamic and adaptive strategy for IDPS, enhancing
resilience against emerging threats and vulnerabilities.

Index Terms—Security, Intrusion Detection and Prevention,
Connected and Autonomous Vehicles

I. INTRODUCTION

Advanced technologies in today’s highly connected and
autonomous vehicles have increased their susceptibility to
numerous cyberattacks. Detecting intrusions and responding to
these cyber threats has become both critical and challenging
[1]. In response to this concern, the recent UN Regulation 155
[2] mandates manufacturers to establish strong cybersecurity
management systems, conduct risk assessments, and enforce
stringent security measures.

The AUTOSAR Intrusion Detection System Manager
(IdsM) [3], a standard introduced by AUTOSAR, provides a
systematic approach to standardizing the IDPS for automotive
applications on classic platforms. While the AUTOSAR IdsM
effectively manages the buffering and filtering of security
events reported by software applications, it does not have
the capability to definitively confirm the presence of an
intruder. Moreover, the existing AUTOSAR architecture does
not provide isolation between the IdsM and other applications
hosted on the same Electronic Control Unit (ECU). As a
result, the integrity of the co-hosted IDPS could be at risk if
any of these applications are compromised. In safety-critical
environments like connected and autonomous vehicles, the
brief time available to respond to an attack and secure the
system highlights the need for reliably identifying an intruder’s
presence within the ECU. This requires comprehensive offline
analysis and the ability to respond to intrusions within the

Vehicle Security
Operations Center

Attack Info, Vehicle Status, ...

 Gateway

Gateway TEE 
IDPS Gateway TEE 

IDPS

TEE 
IDPS

ECU TEE 
IDPSECU TEE 

IDPS ECU TEE 
IDPS ECU TEE 

IDPS

ECU TEE 
IDPS

ECU TEE 
IDPS

Fig. 1: High-level representation of our proposed IDPS within
the vehicle E/E architecture, highlighting isolated communi-
cation channels between different IDPSs and VSOCs. Even if
one ECU is compromised (in red), its IDPS remains secure,
ensuring secure communication of its status.

limited time frame. Neglecting these challenges may have
severe consequences, jeopardizing vehicle safety.

To tackle these challenges, our paper explores strategies to
elevate the standard of automotive IDPS solutions. Firstly, we
propose an architecture, depicted in Fig. 1, designed to uphold
IDPS reliability, even in the event of an ECU compromise.
Secondly, we present an approach to enhance attack detection
and confirmation by analyzing patterns derived from reported
security events. To this end, we suggest tailoring MITRE
frameworks for a comprehensive threat model that surpasses
the constraints of the traditional Threat Assessment and Risk
Analysis (TARA) approach. While TARA addresses external
threats, our proposed approach broadens the scope to include
internal threats. Additionally, our solution’s dynamic nature
addresses Advanced Persistent Threat (APT), contrasting the
static analysis provided by conventional automotive threat
models. This dynamic methodology enhances the capability
to analyze evolving threats in the automotive domain, thereby
fortifying cyber resilience. In summary, in this paper:

• We propose an architecture for automotive IDPS that
reflects the advanced threats faced in the dynamic au-
tomotive landscape (Sec. III and IV).

• We implement our architecture, empirically assess detec-
tion and mitigation approaches, and propose enhance-



ments to enhance security, emphasizing key decisions.
(Sec. V).

II. SYSTEM AND ATTACKER MODEL

System Model: The automotive Electric and Electronic
(E/E) architecture consists of numerous ECUs interconnected
through diverse networks like CAN, Ethernet, and FlexRay.
These ECUs vary in safety integrity levels. With some of the
ECUs adhere to AUTOSAR standards for safety-critical func-
tions, while others, particularly microprocessor-based ECUs
utilize POSIX-based Operating Systems (OSs). This work
focuses on microprocessor-based ECUs known for their com-
plex implementation and vulnerabilities as potential attack
points due to their connectivity to the external environment.
Despite the diversity in OSs, our work proposes a standardized
communication protocol aligned with the frame format of the
IdsM protocol as defined by AUTOSAR [4]. In our system
model, a designated ECU establishes the communication with
the Vehicle Security Operations Center (VSOC), facilitating
data exchange within the automotive E/E architecture [5].

Attacker Model: This section provides an overview of
our considered attacker model. We assume that each ECU
has state-of-the-art security mechanisms in place, including
Secure Boot, Message authentication for communication via
Secure Onboard Communication (SecOC) [6], software signa-
ture verification before flashing, secure access to memory and
diagnosis, sensitive and key material protection, and usage of
Hardware Security Module (HSM) for tamper-resistant storage
and cryptographic computations [7].

While our security measures are in place, we acknowledge
the constant threat of attackers seeking to exploit implemen-
tation weaknesses and vulnerabilities. These vulnerabilities
could lead to safety-critical manipulations, impacting compo-
nents like brakes, steering, and acceleration, as evidenced by
Miller et al. [8]. Attackers can also exploit ECUs for lateral
movements and pivoting attacks, navigating within an ECU
and extending to other ECUs. This was demonstrated by the
Tesla Free-Fall attack [9], which compromised one or more
ECUs, leading to a loss of control and safety. The threat
landscape also includes malicious activities, such as leveraging
control of the ECU to extort sensitive and confidential data
for ransomware attacks [10]. Given this attacker’s intent, our
model assumes the potential compromise of the entire ECU.
Consequently, if the ECU is compromised, the communication
channel and memory are also compromised. We assume the
integrity of communication with the back-end is protected.
However, an attacker could obstruct the ECU from sending
information to the VSOC, preventing timely responses from
the VSOC. We exclude sophisticated attacks, like man-in-
the-middle attacks, aiming to intercept communication sent
to the VSOC and other ECUs. Additionally, we assume the
use of a Trusted Execution Environment (TEE) and trust that
the TEE remains uncompromised. We posit that an attacker
compromising the host application cannot breach the trust
boundary.

III. PRELIMINARIES

In order to mitigate attacks through an IDPS in an auto-
motive setting, selecting a threat model aligned with potential
intrusions is crucial. A systematic analysis of the chosen threat
model allows for identifying suitable detection methods and
proposing effective countermeasures against potential threats.
Currently, threat modeling in the automotive industry primarily
relies on TARA. However, TARA mainly focuses on external
threats, resulting in a limited threat landscape reflected in the
IDPS’s capabilities. Therefore, a comprehensive offline anal-
ysis, supported by an appropriate framework and knowledge
base, is necessary when designing an IDPS for automotive
systems. To achieve this, we have explored Cyber Kill Chain
(CKC), MITRE Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK), and D3FEND models.

The CKC, introduced in 2011 [11] and utilized in Cyber
Threat Intelligence (CTI), outlines that an attack follows a
sequential chain or end-to-end process, involving seven stages:
weaponization, delivery, exploitation, installation, command
and control (C2), and actions on objectives. Analyzing these
stages within the CKC allows us to predict the current stage
of an attacker’s progress. Understanding these adversary steps
in detail enables the introduction of security decisions and
measures to identify Indicators of Compromise (IoC).

The MITRE ATT&CK framework offers a comprehensive
examination of the attack lifecycle based on the attacker’s
tactics to identify IoCs. Compared to CKC, the MITRE
framework provides a more detailed breakdown of attack
stages, offering finer granularity that is beneficial for IDPS
threat modeling and covering a broader threat landscape.
MITRE ATT&CK is a behavior-based approach, categorizing
tactics as the ’why’ (reason an attacker performs a spe-
cific action in threat modeling) and techniques as the ’how’
(method by which an action was performed). By combining
these techniques and tactics with the target, we can deduce
“what”-was performed on the target [12]. Inspired by MITRE
ATT&CK, a domain for automotive systems is under de-
velopment by Auto-ISAC, as mentioned by Mackay [13].
The stages in the MITRE framework for automotive systems
include: Manipulate Environment, Initial Access, Execution,
Persistence, Privilege Escalation, Defense Evasion, Credential
Access, Discovery, Lateral Movement, Collection, Command
and Control, Exfiltration, Affect Vehicle Function, and Im-
pact. MITRE also offers Detection, Denial, and Disruption
Framework Empowering Network Defense (D3FEND) [14],
functioning as a mitigation matrix database or knowledge
graph. This tool provides cybersecurity countermeasures to
help mitigate detected attacks.

We analyze automotive MITRE ATT&CK techniques along
with their corresponding entries in D3FEND to support the
design of the IDPS. This involves examining various security
attacks that have targeted automotive systems [8], [9], [15],
[16], including a notable example - the Tesla Free-Fall WiFi
attack [9]. This real-world incident emphasizes the need for in-
depth detection and mitigation strategies in our proposed IDPS

2



TABLE I: Tesla Free-Fall attack visualized with MITRE ATT&CK techniques and mitigation identified through MITRE
D3FEND.

Attack Stages Technique Detection and Mitigation

Vulnerability scanning Network traffic analysis Configuration hardening
Rougue WiFi Access Point (Tesla Guest) Rogue WiFi Access Point Configuration hardening
Buffer overflow - code injection on QtCarBrowser (CVE-
2011-3928)

Exploit public facing applica-
tion

Application hardening through stack protections

ARM vulnerability on Linux (CVE-2013-6282) allowing UID:
2222 to become root through put_user/get_user

Abuse Elevation control mech-
anism

Isolation through system call filtering

Disables AppArmour: reset_security_ops() Bypass mandatory access con-
trol

Access control and isolation via system call filtering

ECU verifies only filename before flashing Bypass code signing Implementation of cryptographic code signing
Update Gateway ECU gtw.hex rules Reprogram for lateral move-

ment
Implement secure flashing approach to authorize

Manipulate brakes and steering on CAN Modify Bus message Share the compromised information from GW to other
ECUs

Free-Fall of messages from WiFi to CAN Loss of control / safety Retain safety

design. The attack unfolded in progressive stages, starting
with vulnerability analysis and culminating in the complete
compromise of vehicle control or safety.

Table I shows the attack stages carried out by the attackers,
mapped to MITRE ATT&CK and D3FEND. From the infor-
mation in column 2 of Table I, it becomes evident that a spe-
cific ECU may face numerous threats, systematically identified
through an in-depth threat modeling approach implemented
using MITRE ATT&CK. Once all the threats and exploitation
techniques are identified, corresponding detection and miti-
gation strategies can be developed, leveraging the D3FEND
framework, as shown in column 3 of Table I. Additionally, the
example in the table highlights its capability to address threats
involving lateral movements. Thus, by correlating the attack
technique with the attack stage, insights into the attacker’s
intent and the severity of the attack can be deduced.

The detection and mitigation techniques we have selected
form the foundation of our proposed IDPS. These selections
are based on the frequency and severity of attacks in the auto-
motive sector. The techniques include cryptographic measures,
application hardening, process isolation, and network analysis
from the host’s perspective. Other techniques, such as message
authentication, are already part of the state-of-the-art in auto-
motive security. In the following section, we introduce the
terminologies used in IDPS, describe our intrusion detection
and prevention elements, outline our selected detection and
mitigation strategies, and illustrate how they are integrated into
our automotive architecture.

IV. PROPOSED ARCHITECTURE

The proposed architecture is shown in Fig. 2, depict-
ing a microprocessor-based environment commonly found in
complex automotive ECUs. This environment is capable of
hosting multiple virtualized instances, such as an AUTOSAR
Adaptive POSIX-based OS for safety-related applications and
a Linux-based system for AI/ML applications. Our approach
integrates a TEE alongside a hardware cryptographic co-
processor housed in a HSM and multiple Virtual Machines
(VMs) within a System on a Chip (SoC) framework. This ar-
chitecture enables the secure integration of intrusion detection

elements. The TEE, denoted as IDM TEE in our architecture,
incorporates the detection engines, internal forensics, and
reporting module responsible for back-end communication.
Crucially, the communication context of the TEE is isolated
from the Rich Execution Environment (REE). Therefore, even
if the host environment is compromised, communication to
the back-end remains secure and uncompromised. The internal
elements facilitating the implementation of intrusion detection
and ensuring overall security are detailed in the subsections
below.

Security Policy: To achieve application hardening, im-
plementing an access control mechanism becomes imperative.
This mechanism enforces a Security Policy (secpol) dictating
the permissible activities within the application [17]. We
implement access control mechanisms using existing secpol,
such as AppArmor in Linux and security policy in QNX.
The secpol defines rules and access rights for various system
components. The kernel manages, securely stores, and verifies
the secpol during system boot-up. Post the startup of the OS,
security policies are loaded, and rights for individual objects
are retrieved. Only the Policy Engine in the kernel can read
these policies, and log files are exclusively writable by the
policy server, preventing compromise and log file corruption
by a compromised user.

Execution Manager: The Execution Manager, modeled
after AUTOSAR Adaptive Platform’s Execution Manager, is
the initial executable launched post-OS. It manages ECU ap-
plications, addressing configuration properties, resource group
allocation, and startup/shutdown procedures. Utilizing a mani-
fest, the Execution Manager governs process-specific attributes
such as priority, scheduling policy, and access rights [18]. This
design ensures fine-grained access control over the application
and its resources.

Strict measures disallowing external spawning of processes,
as implemented in our system, represent a novel addition
to the established AUTOSAR framework. This enhancement
effectively mitigates security threats, including process and
binary injections, through the implementation of robust access
controls.

3



REE

Processor (SoC)

IDM TEE

VM VM

HSM

Hypervisor

Adaptive Autosar

RTE

POSIX OS Linux Kernel 

Security PolicyPolicy Engine Security PolicyPolicy Engine

App2 Third-
Party
ShimShim

App1

Shim

Execution
Manager

QSEV

IDM Helper

User Space 

App4 Third-
Party
ShimShim

App3

Shim

Sensors

Sensors

Crypto
Services

Key
Management

Detection
Engines

Internel Forensics

Reporter to VSOC
and ECUs

Detection
Engines

IEV

Detection
Engines

QSEV

Execution
Manager IDM Helper

CIEV

CIEV

Fig. 2: Proposed IDPS architecture showing the internal components represented on a virtualized SoC platform.

Sensors and Shims: Additional code integrated into
the binary for intrusion detection is known as shims [19].
The effectiveness of intrusion detection heavily depends on a
comprehensive analysis of the need for these shims. Without
them, the intrusion detection system may not reliably detect
specific cyberattacks. To create the sensors and shims, we
analyzed automotive attacks and experimental studies [8], [9],
[15], [16]. We developed our sensors and shims using the
MITRE D3FEND framework, which facilitates development
of sensors through measures such as hardening, detection, iso-
lation, eviction, deception, and restoration techniques. Sensors
and shims are categorized based on their deployment location,
either as network deployment sensors or host deployment
agents, according to NIST [19].

1) Network Sensors: The network serves as the initial point
of contact with the outside world, making ECUs connected
to the external world, such as Infotainment and Telematics,
vulnerable to attacks. To strengthen these complex ECUs,
network-based IDPS are developed in conjunction with fire-
walls [20], [21]. The network data of in-vehicle automotive
architectures is defined in files such as AUTOSAR XML
(arxml) or database CAN (DBC). These files form the basis
for the development of network sensors through the analysis
of message properties like frequency and data length, defined
in the network matrix. This information can be used to
develop statistical anomaly detection, whitelisting, frequency
analysis, and analysis of diagnostic requests and their Negative
Response Codes (NRC) [22]. Through Deep Packet Inspec-
tion (DPI), the network data is analyzed, and sanitization
techniques are deployed. This paper does not delve into
the network-based sensors in depth; instead, it assumes the
availability of certain sensors that are commercially available
[20].

2) Host Agents/Shims: AUTOSAR IdsM enables event
reporting at the software component level, capturing events
that include software-related errors. Therefore, our focus is on

customizing agents at the software level to gather information
relevant to potential attacks. Utilizing the MITRE ATT&CK
and D3FEND approach, we delved into buffer overflow mitiga-
tion and process isolation techniques through security policies,
referencing the work by [8], [9], [15], [16], [23]. Among the
application hardening techniques, we investigated stack pro-
tection through binary instrumentation provided by the GCC
compiler option. Our experiments included compiler options
like -fstack-protector-all for Stack Smashing Protector (SSP),
-fPIE and -fPIC for Address Space Layout Randomization
(ASLR), and -fcf-protection=full -flto -O1 for
Control-Flow Integrity (CFI). For process isolation, we de-
ployed a Discretionary Access Control (DAC)-based access
control using Linux user rights and permissions. Binaries
launched by the execution manager are provided with limited
access rights to resources and files. D3FEND elaborates on
several other mitigation techniques that can be deployed
depending on the type of threat that the target ECUs face.

3) Cryptographic Sensors: The cryptographic events re-
ported by cryptographic co-processors, such as the HSM,
are of high security importance. State-of-the-art cryptographic
measures like SecOC for message authentication [6], software
signing, and authenticated security access [22] are adopted
for automotive systems [7]. These measures are used for
diagnosis, secure flashing, and secure software updates. The
combination of these security events, along with other net-
work and host events, provides valuable insight into potential
intrusions.

IDM Helper: The IDM Helper is a specialized compo-
nent designed to limit communication with the TEE. Events
detected by the Execution Manager are reported to the IDM
Helper. In addition, the IDM Helper periodically monitors the
log at specified intervals to detect any potential intrusions.
Upon receiving active sensor information, the IDM Helper
assesses the event’s criticality based on a predefined list.
This information undergoes immediate validation by analyzing

4



the logs, and the IDM Helper then forwards this validated
information to the IDM TEE. The communication to the IDM
TEE is isolated by hardware properties, such as the TrustZone
Secure Monitor Calls. This ensures the secure transmission of
information to IDM TEE.

Detection Engines: Detection engines play a crucial role
in analyzing collected events to identify potential intrusions.
The use of multiple detection engines enhances the quality
and accuracy of intrusion detection. Various types of detec-
tion engines, such as anomaly detection, signature or pattern
detection, and rule-based detection engines, can be employed.
Due to the detection accuracy and complexity of anomaly-
based approaches, we have chosen to focus on pattern and rule-
based intrusion detection for this work. The detection engines
combine multiple security events to determine the intrusion at-
tempt. In AUTOSAR IdsM, some events are buffered, filtered,
and immediately qualified as qualified security event (QSEV).
In our proposed system, these QSEVs are further processed by
the detection engines to match with patterns and rules, forming
Intrusion Events (IEV).

Internal Forensics: Internal forensics enables attack
analysis, evaluating each detected intrusion’s severity before
the IDM unit suggests a reaction. The proposed reaction
depends on the safety level of the underlying ECU. Internal
forensics, being a future topic, is expected to enhance the
prevention capabilities of intrusion detection and prevention
systems by providing timely responses. The events reported
by the internal forensics are classified as Confirmed Intrusion
Event (CIEV).

Intrusion Reporter: The intrusion reporter component
facilitates information sharing among the various IDPS in
different ECUs and to the back-end, the VSOC. The exchanged
data adheres to the same format as the Intrusion Detection
System Protocol of AUTOSAR [4], ensuring a standard com-
munication between different ECUs. The frame’s integrity
and freshness are protected, and it can be encrypted for
secure transmission over a wireless network. A crucial security
aspect of the Intrusion Reporter in our architecture is that the
reported information is isolated from the host system, ensuring
a trusted architecture. This provides a medium for reporting
the intrusion status between ECUs and VSOC. Upon receiving
the intrusion status, each ECU can decide on the reliability of
data received from a potentially compromised ECU and trigger
degradation modes if necessary.

V. EVALUATION

This section details the important aspects of the architecture
we evaluated within this work.

IDPS Prototype: A prototype of our proposed solution
has been developed within a virtualized Linux environment,
designed to closely resemble the complexity of an automotive
ECU setup. However, the environment does not fully replicate
an ECU system, preventing the thorough testing of the entire
Tesla free-fall attack discussed before. During this phase of our
research, our primary focus has been on the implementation
and evaluation of key components of the proposed system,

specifically the shims, security policy and engine and the
execution manager. This approach allows us to ensure the
robustness and effectiveness of each element before integrating
them into a comprehensive solution. As we progress, we an-
ticipate expanding our scope to encompass other components,
thereby enhancing the overall functionality and resilience of
our system.

Detection Evaluation: In our study, we assume that
proficient attacker utilize various tools, such as fuzzing and
Common Vulnerabilities and Exposures (CVE) exploitation,
to identify system vulnerabilities. To assess the effectiveness
of our detection system against these threats, we have devised
test cases targeting intentionally introduced vulnerabilities.
For this, we deliberately inserted buffer overflow vulnerabil-
ities into the sample application to simulate potential attack
scenarios. The sample application, representing a typical au-
tomotive software environment, serves as the foundation of
our evaluation. Within this application stack, we simulate a
communication stack with packet encryption and decryption,
reflecting real-world scenarios.

Furthermore, we implemented a series of protective mea-
sures, known as shims. These shims, including stack canaries
(SSP), ASLR, and CFI, function as proactive agents designed
to detect and mitigate heap and stack vulnerabilities within our
automotive setup, which are among the most common vulnera-
bilities in this domain [24]. The binaries associated with these
vulnerabilities were compiled using GNU Compiler Collection
(GCC), a widely adopted standard in the development of ECUs
within the automotive domain.

We evaluated the detection efficiency of the proposed sys-
tem by first attempting to spawn a process that had not
been previously defined. Our observations revealed that the
system successfully prevented this unauthorised spawning. In
addition, we tested the access control mechanisms imple-
mented through the security policy by initiating processes
with resources that had not been previously allocated and
attempted to grant additional permissions. During run-time,
we also tried accessing files and Interprocess Communication
(IPC) channels that were not permitted in the access control
list, which led to observable error numbers returned to the exe-
cution manager, as expected. With respect to buffer overflows,
we manipulated the packets which the application receives,
with out-of-range data, and found that these were effectively
mitigated by the implemented buffer overflow protections via
the shim, leading to Standard Errors (STDERRs) that can be
further processed and reported by the IDPS reporting system.

Performance Evaluation: The complete system’s per-
formance evaluation was not feasible in this stage of our
research. Instead, we explored methods to generate figures
closely representing automotive use cases. For this purpose,
we examined an Automotive real-time ECU implementing
a Driver Assistance System, operating on a QNX system
(project details are kept confidential). The QNX system is
equipped with a pre-existing default security policy known
as secpol. This policy effectively manages access to objects
and resources by defining rulesets. To assess the differences

5



TABLE II: Performance evaluation of shims instrumentation
against the reference value of None, indicating the absence of
instrumentation.

Shim Text
(Bytes)

Data
(Bytes)

Cycle
Count

Runtime
Overhead
(%)

None 4947 712 2146 0.0
SSP 4963 712 2356 8.9
ASLR 5262 768 2738 27.5
CFI 5075 712 2485 15.7

between the default and comprehensive QNX security policies,
we recorded tracebuffers during the boot procedure until
a specific process successfully started. This allowed us to
analyze and compare the implementations of these security
policies and their impact on time consumption. During our
analysis using the Tracelogger tool, we observed minimal
differences in performance values when specific secpol was
enabled or disabled. This observation provided confidence
that our conceptual implementation could be executed without
significant additional overhead.

Subsequently, to evaluate the potential performance over-
head introduced by the shim, we tested the buffer overflow
mitigations under different options, specifically ASLR, SSP,
and CFI, on software compiled with GCC. Table II presents
the evaluation results, detailing the overhead incurred by
the mitigation methods in terms of additional code added
to the binaries, increased code size, and additional run-time
overhead, compared to a non-existent instrumentation referred
to as ”None” in the table. The evaluation shows that the use
of ASLR results in the highest run-time overhead of 27.5%,
followed by CFI and SSP with overheads of 15.7% and 8.9%,
respectively.

Security Design Evaluation: Ensuring the robustness
of our proposed concept was a primary objective in our
architectural design. Therefore, we conducted an evaluation
using the STRIDE-per-interaction methodology, facilitated by
the Microsoft Threat Modeling tool [25]. This assessment
allowed us to define trust boundaries and make crucial design
decisions. The following enumeration outlines the key design
decisions that resulted from our evaluation process.

• Hosting intrusion detection components in an isolated
TEE environment is imperative for robust security.

• The Execution Manager should exclusively maintain the
list of processes to be launched, thereby preventing other
applications from initiating a process.

• It’s essential to extend access control for resources to all
applications, including third-party applications.

• Ensuring access rights for security policy storage is
crucial. Even modifications by root users should be
restricted.

• The security policy should be prioritized to be loaded
immediately after boot-up, preceding any application
loading.

• Modifications to access logs should only be permissible

through the security policy enforcement server.
These design decisions significantly enhance the architecture’s
robustness by reinforcing critical security properties.

VI. RELATED WORK

The NIST guide on IDPS [19] serves as a vital reference
for automotive IDPS in IT systems. The initial insight into the
application of IDPS to automotive systems was first analyzed
by Hoppe et al. [26] in 2009. Their paper highlighted the need
for reactive measures through IDPS, complementing the exist-
ing proactive measures. Lee et al. [27] evaluated the necessity
of IDPS in addressing automotive attacks. They utilized the
cyber kill chain from Lockheed Martin Cooperation [11] and
derived a strategic course of action for vehicle security.

Several network-based IDPS solutions, such as Snort [28]
and CycurIDS [20], have been extensively researched for both
IT and automotive applications. While a network-based IDPS
focuses on external threats, it is crucial to complement it with a
host-IDPS to provide an effective defense strategy. Wasicek et
al. [29] developed an Artificial Neural Network (ANN)-based
intrusion detection system, placing the IDS in the central ECU
and modeling vital vehicle parameters to detect chip tuning.
Jiang et al. [30] expanded this by incorporating road context,
using camera images in a Convolutional Neural Network
(CNN) model for intrusion identification. The explainability of
machine learning-based intrusion detection and the challenges
of false positive rates in anomaly-based classification, as noted
by [31], make deploying preventive measures challenging. The
use of a distributed intrusion detection system, hosted by each
ECU, was proposed in [21]. However, this solution was limited
to monitoring the network traffic of each ECU and did not
consider other types of attacks.

The use of an isolated, tamper-resistant core for the IDPS
was proposed by Yoon et al. [6]. A similar architecture is found
in ETAS CycurSoC for automotive applications [32], which
includes TEE and REE partitions along with HSM. While
the NIST’s IDPS guideline [19] provides valuable insights on
architectural design, the same architecture may not be suitable
for scenarios involving a compromised host. Hoppe et al. [26]
examined the integration of diverse detection engines. We pro-
pose to expand these detection engines to address automotive
threats with the assistance of MITRE ATT&CK and D3FEND.
For the forensics-based reaction approach proposed by Hamad
et al. [1], our proposed architecture forms a robust framework
through isolation mechanisms.

VII. CONCLUSION AND FUTURE WORK

In this work, we analyzed the critical aspects of automotive
IDPS and the improvements in the current AUTOSAR stan-
dard for intrusion detection. We proposed using an in-depth
threat analysis approach, such as MITRE, in conjunction with
TARA to address both insider and outsider threats, thereby
enhancing the resilience of ECUs. We proposed an architecture
for IDPS that enables communication of the health status of
the ECUs with other ECUs and to VSOC, even if the host of
the ECU is compromised. This allows the VSOC to propose a

6



reaction strategy, and the other ECUs to respond accordingly
with the intrusion status received from the compromised
ECU. We evaluated some proposed mitigation strategies in a
virtualized environment and observed that employing sensors
introduces additional overhead. We additionally evaluated the
proposed architecture using STRIDE-per-interaction to iden-
tify crucial design decisions to enhance resilience of our
architecture.

The performance results show that while the mitigation
methods proposed can enhance security, they come with a
performance cost. The overhead needs further evaluation for
the corresponding ECU, taking into account anticipated threats
and the available computational capacity. Such a prevention
technique might not be implemented on a classic AUTOSAR-
based ECU running on a micro-controller due to its computa-
tional limitations. Simultaneously, the threats faced by such an
ECU, compared to a complex ECU with external connections,
are minimal, allowing for an evaluation of associated risks. As
future work, we intend to evaluate the concept on a complex
real target ECU, such as an infotainment system, to analyze
the threats faced and overall overhead observed as well as the
reaction safety.

Furthermore, the forensic unit represents a crucial next step
in our work. Depending on the state of the vehicle and the
stage of the attack, the severity of the intrusion may vary. By
integrating it with the safety context of the vehicle, a reaction
can be proposed within the vehicle, addressing the available
time window. This facilitates an internal reaction strategy,
eliminating the necessity for reactions from the VSOC. A man-
in-the-middle attack can disrupt communication between the
VSOC and ECU, thereby halting the reaction process. Such
vulnerabilities can be mitigated by establishing an internal
reaction system.

ACKNOWLEDGMENT

This paper is supported by the project IDPS at Bosch
Business sector Mobility (BBM) and by the European Union-
funded project CyberSecDome (Agreement 101120779).

REFERENCES

[1] M. Hamad, M. Tsantekidis, and V. Prevelakis, “Intrusion response
system for vehicles: Challenges and vision,” in International Conference
on Smart Cities and Green ICT Systems, pp. 321–341, Springer, 2019.

[2] United Nations Economic Commission for Europe, “UN Regulation
No. 155: Cybersecurity and Cybersecurity Management Systems for
Vehicles,” 2020.

[3] AUTOSAR, Specification of Intrusion Detection System Manager, 2020.
[4] “AUTOSAR SWS:Specification of Intrusion Detection System Man-

ager,” 2020.
[5] M. Hamad, M. Tsantekidis, and V. Prevelakis, “Red-zone: Towards an

intrusion response framework for intra-vehicle system,” in Proceedings
of the 5th International Conference on Vehicle Technology and Intelli-
gent Transport Systems (VEHITS), pp. 148–158, 2019.

[6] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 21–32, 2013.

[7] M. Ring, D. Frkat, and M. Schmiedecker, “Cybersecurity evaluation
of automotive e/e architectures,” in ACM Computer Science In Cars
Symposium (CSCS 2018), 2018.

[8] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, no. 260-264, pp. 15–31, 2013.

[9] S. Nie, L. Liu, and Y. Du, “Free-Fall: Hacking Tesla from Wireless to
CAN Bus,” in Black Hat Europe, pp. 1–22, 2018.

[10] M. Wolf, R. Lambert, A.-D. Schmidt, and T. Enderle, “Wanna drive?
feasible attack paths and effective protection against ransomware in
modern vehicles,” 2017.

[11] “Cyber Kill Chain : Intelligence Driven Defense,” tech. rep., Lockheed
Martin Corporation, 2014. Online; accessed on March 2, 2023.

[12] J. Straub, “Modeling attack, defense and threat trees and the cyber
kill chain, att&ck and stride frameworks as blackboard architecture
networks,” in 2020 IEEE International Conference on Smart Cloud
(SmartCloud), pp. 148–153, 2020.

[13] M. Mackay, “When 21434 and R155 ATTACK.” https://fnc.itu.int/
wp-content/uploads/2021/03/Matthew-Mackay GM-FNC-2021.pdf.

[14] The MITRE Corporation, “D3FEND.” https://d3fend.mitre.org/. Online;
accessed on March 30, 2023.

[15] “Experimental Security Assessment of BMW Cars: A Summary Report,”
tech. rep., Tencent Security Keen Lab, 2018.

[16] “Experimental security assessment of mercedes-benz cars,” tech. rep.,
Tencent Security Keen Lab, 2021.

[17] V. Prevelakis and M. Hamad, “A policy-based communications archi-
tecture for vehicles,” in 2015 International Conference on Information
Systems Security and Privacy (ICISSP), pp. 155–162, IEEE, 2015.

[18] “AUTOSAR SWS: Specification of Execution Management,” AU-
TOSAR Adaptive Platform Specification: R20-11, AUTOSAR Devel-
opment Partnership, 2020.

[19] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps),” Special Publication 800-94, National Institute of Stan-
dards and Technology, 2010.

[20] “Continuous Security Monitoring with ESCRYPT Intrusion Detection
Solutions.” https://www.etas.com/download-center-files/DLC products
ESCRYPT/etas-flyer-escrypt-cycurids-en-20221220.pdf, 2022.

[21] M. Hamad, M. Nolte, and V. Prevelakis, “A framework for policy
based secure intra vehicle communication,” in 2017 IEEE Vehicular
Networking Conference (VNC), pp. 1–8, IEEE, 2017.

[22] “Road vehicles — Unified diagnostic services (UDS) — Part 1: Spec-
ification and requirements,” Standard ISO 14229-1:2020, International
Organization for Standardization, Geneva, CH, 2020.

[23] M. Tsantekidis, S. Abdelghani, M. Hamad, and V. Prevelakis, “Creating
a security enforcement environment for a vehicular platform,” in 2023
IEEE Conference on Standards for Communications and Networking
(CSCN), pp. 278–283, 2023.

[24] B. Potteiger, Z. Zhang, L. Cheng, and X. Koutsoukos, “A tutorial
on moving target defense approaches within automotive cyber-physical
systems,” Frontiers in Future Transportation, vol. 2, 2022.

[25] Microsoft Corporation, “Microsoft Threat Modeling Tool 2016.” https://
www.microsoft.com/en-us/download/details.aspx?id=49168, 2016. On-
line; accessed on March 29, 2023.

[26] T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detection
to automotive it-early insights and remaining challenges,” Journal of
Information Assurance and Security (JIAS), 2009.

[27] S.-W. Lee, Y. Yoon, and H. K. Lee, “Practical vulnerability-information-
sharing architecture for automotive SRA,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 21, no. 9, pp. 3669–3680, 2019.

[28] M. Roesch, “Snort: Lightweight intrusion detection for networks.,” in
LISA, pp. 229–238, USENIX, 1999.

[29] A. Wasicek, M. D. Pesé, A. Weimerskirch, Y. Burakova, and K. Singh,
“Context-aware intrusion detection in automotive control systems,” in
Proc. 5th ESCAR USA Conf, pp. 21–22, 2017.

[30] J. Jiang, C. Wang, S. Chattopadhyay, and W. Zhang, “Road context-
aware intrusion detection system for autonomous cars,” in Information
and Communications Security, Springer International Publishing, 2020.

[31] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detection
system for automotive controller area network (can) bus system: a re-
view,” EURASIP Journal on Wireless Communications and Networking,
vol. 2019, pp. 1–17, 2019.

[32] “Security software for Automotive System-on-Chip ESCRYPT
CycurSoC.” https://etas-cn.net/download-center-files/DLC products
ESCRYPT/etas-flyer-escrypt-cycursoc-en-20221220.pdf. Online;
accessed on March 23, 2023.

7


